US ERA ARCHIVE DOCUMENT

100601 SHAUGHNESSEY NO.

23	
REVIEW	NO.

EEB BRANCH REVIEW

DATE:	IN	6/82	_ OUT _	9/28/82	
FILE OR REG. NO.	=		3125 -	236, - 238	
PETITION OR EXP. PE	RMIT NO		<u></u>		
DATE OF SUBMISSION			6/21/	/82	
DATE RECEIVED BY HE	D		7/16/	/82	
RD REQUESTED COMPLE	TION DATE		10/ 1/	/82	
EEB ESTIMATED COMPL	ETION DATE		9/24/	⁄82	
RD ACTION CODE/TYPE	OF REVIEW	335	/ Amend	ment — New Food/Feed U	Jse
				•	
TYPE PRODUCT(S): I	, D, H,	F, N, R	, s	Insecticide	
DATA ACCESSION NO(S)			None	
PRODUCT MANAGER NO.		н. Ја	coby (2]	_)	
PRODUCT NAME(S)		Nemac	ur 15G a	and Nemacur 3 (E)	
COMPANY NAME		Dow Ch	emical C	Company	
				stration of Grape Use	
SHAUGHNESSEY NO.		CHEMICAL	, & FORM	ULATION	% A.I.
100601	Fenamipho	os [Ethyl	3-methyl	4-(methylthio)phenyl	
<u>.</u>	(methylet	thyl) phos	phoramid	late] or	
	[Ethyl 4-	-(methylth	io)-m-to	olyl isopropyl	
		phosphoram	idate]		
		·····	Nemacur	3 (E)	35.0
			Nemacur	- 15 G	15.0

100 Pesticide Label Information

100.1 Pesticide Use

Nemacur 3 and Nemacur 15G are proposed as an insecticide for control of nematodes in grapes.

100.2 Formulation Information

Nemacur 3 -- 35 % ai (3 lb ai per gallon) Nemacur 15G -- 15 % ai

100.3 Application Methods, Directions, Rates

Use Nemacur 3 and 15G formulations at a rate of 18 lb a.i./A for broadcast applications and 9 lb a.i./A (18 lb a.i. per $\frac{\text{treated}}{\text{treated}}$ acre) for band treatments with a minimum width of 50% of the row spacing. For Nemacur 3 use 6 gallons product in 20 to 40 gallons of solution per acre.

Broadcast: With ground injection equipment (west of Rockies) and with suitable ground equipment (east of Rockies), apply 120 pounds (18 lb a.i. per acre 2 or more inches below soil surface.

Band: Use proportinally less Nemacur per acre. Treated band should center on the vine row with a minimum width of 50% of row spacing. West of the Rocky Mountains, apply with ground injection equipment. East of the Rocky Mountains, incorporate immediately.

NOTE: For use on grapes (west of the Rocky Mountains) Control of nematodes is best obtained when there is adequate rainfall or irrigation after application to move the product into the root zone.

100.4 Target Organism(s)

Control of nematodes in grapes.

100.5 Precautionary Labeling

No new precautionary labeling was submitted. Available labels approved in April 1982 read:

Nemacur 3:

This product is toxic to fish, birds, and other wildlife. Keep out of lakes, streams, or ponds. Birds feeding on treated areas may be killed. In cleaning of equipment or disposal of wastes, do not contaminate water.

Nemacur 15G:

This product is toxic to fish and wildlife. Keep out of lakes, streams, or ponds. Birds feeding on treated areas may be killed.

	-
101	Physical and Chemical Properties (See EEB Review by Mary Gessner,
101.1	Chemical Name
	Ethyl 4-(methylthio)-m-tolyl isopropyl phosphoramidate
101.2	Structural Formula $C_2H_5 - O$ $P - O - CH_3$ $(CH_3)_2CH - NH$
	(CH3)2CH - NH / CH3
101.3	Common Name Fenamiphos
101.4	Trade Name Nemacur
101.5	Molecular Weight —- 303
101.6	Physical State
	Form and color: Tan, waxy solid Odor: pH: Melting Point: Boiling Point: Vapor Pressure:

101.7 Solubility

Soluble in most organic solvents Water: ca. 400 ppm

Behavior in the Environment (See EFB Review by Mary Gessner, dated 12/3/80 for extraction of EFB Review by R. W. Cook, dated 10/3/73)

Some leaching in soils with low adsorption coefficient (low in organic matter and fine clay particles). Some runoff. Half-life in water (pH 7) is about 5 days. Nemacur and its soil metabolites, sulfoxide and sulfone, are absorbed by plants.

103 <u>Toxicological Properties</u> (See EEB Reviews by O'Brien, dated 11/25/77, and Turner, dated 9/27/78, and Tox Review by Coberly, dated 9/15/69)

Test	Species	Material	LD/LC50	Validation Status
Oral LD50	Rat (M) Rat (F) Rat Mouse (F) Guinea Pig Cat Dog	Tech. Tech. Tech. Tech. Tech. Tech. Tech.	4.75 m 10 - 19 m 8.3 m 75 - 100 m 2.5 - 10 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg
	Rat (F) Rat (F) Rat (F) Rat (F)	35 % ai 35 % ai 10 % ai 5 % ai	25 (97-188) m 56.5 m	ng/kg ng/kg ng/kg ng/kg
Dermal LD50	Rat Rabbit (M)	% a.i. Tech.	225 n	ng/kg ng/kg ng/ka

3

103.2	Minimum Requirements	(Compilation of EEB Reviews and Data Validations,
		O'Brien, 11/25/77; and Gessner, 12/3/80)

	Test	Species	Mate	rial	LD/LC50	Validation Status	Data Source
103.2.1	Acute Oral LD50	Bobwhite (M) Bobwhite (F) Mallard (M) Mallard (F) Mallard (M) Mallard (F)	88 88 88 88 88	% ai % ai % ai	0.7 (0.5-0.8) 0.9 (0.7-1.1) 1.1 (0.9-1.3) 1.2 (0.9-1.6) 1.0 (0.9-1.2) 0.9 (0.8-1.1)	mg/kg Invalid mg/kg Invalid mg/kg Invalid	(1978) " Nelson &
		Canary Pigeon R-n. Pheasant Mallard	81.6	% ai % ai			Herman (unk) Herman (unk) Hudson (1972) Hudson (1972)
		Canary	Tech	•	0.5 - 1	mg/kg Suppl.	Farbenfabriket
		Bobwhite (M) Bobwhite (F) Mallard	35 35 35?	% ai % ai	2.2 (1.9-2.5) 2.5 (1.9-2.8) 2.5 - 3 (ca. 0.87 % ai)	mg/kg Sup/Core mg/kg Sup/Core	Bradburn (1969
		Bobwhite (M) Bobwhite (F)			0.8 (0.7-0.9) 1.8 (1.4-2.3)		Keichline & Bradburn (1969
				Nemac	ur Sulfoxide		
		Bobwhite (M) Bobwhite (F) Mallard (M) Mallard (F)		% ai % ai	1.8 (1.4-2.3) 1.8 (1.4-2.3) 1.5 (0.9-2.4) 1.5 (1.2-1.8)	mg/kg Invalid mg/kg Invalid	Jones
				Nemac	ur Sulfone		
		Bobwhite (M) Bobwhite (F) Mallard (M) Mallard (F)		% ai % ai	1.9 (1.2-3.1) 4.3 (3.2-5.8) 1.1 (0.8-1.5) 1.3 (1.0-1.8)	mg/kg Suppl. mg/kg Suppl.	76 65 15 16
103.2.2	8-Day Dietary	Bobwhite(13d)	88	% ai	36 (31 - 4	5) ppm Core	Nelson & Burke (1977b)
	LC50	Mallard (14d) Coturnix(14d)				7) ppm Core l) ppm Suppl.	Fink (1977) Hill et al (1975)
103.2.3	96-Hour Fish LC50	Bluegill	88	% ai	9.5 (6.8-15) ppb Core	Lamb & Roney (1977)
		Bluegill	81	% ai	17.7 (14.4-21.	6) ppb Core	Lamb & Roney (1972a)
		Rainbow Trout	81	% ai	72.1 (61.2-84.	7) ppb Core	Lamb & Roney (1972b)

		Mosquitofish	74.1	g _S	ai		<	100	ppb		Suppl.	Metcalf & Rowehl (1971)
		Blk Bullhead Mosquitofish Sailfin Molly	Tech		no					ppb	Suppl. Suppl. Suppl.	Marking (1970 Rowehl (1969)
		Mosquitofish Sailfin Molly	40 40								Suppl. es Suppl.	Rowehl (1969)
		Catfish sp.?	35	g _o	ai	10.5	9.7	7 - :	11.4)	ppm	Sup/Core	Keichline & Bradburn (1969b)
		Rainbow Trout	35	ò	ai	310	(2	250-	360)	ppb	Sup/Core	Keichline & Bradburn (1969a)
		Bluegill	15	8	ai	151	(]	.14-	201)	dqq	Sup/Core	Lamb & Roney
		Rainbow Trout	15	8	ai	563	(4	54-	698)	ppb	Sup/Core	(1972a) Lamb & Roney (1972b)
		Goldfish Goldorfs Rainbow Trout		ક્ર	ai	500 - 100 - 111	1,	000	130)	ppb	Invalid	Cichoruis (1970) Keichline & Bradburn (1969a)
				Ne	mac	ur Sul	.fox	ide				
		Bluegill	99	g.	ai	2000	(18	00-2	2300)	ppb	Suppl.	Lamb &
		Bluegill		ક	ai	2653	(10	00-4	1600)	ppb	Core	Roney (1972) Lamb & Roney (1977)
				Ne	mac	ur Sul	.fon	e				
		Bluegill		æ	ai	1173	(10	00-1	L500)	ppb	Core	Lamb & Roney (1977)
103.2.4	Aquatic Invertebrate 48-Hour EC50	Daphnia magna	88	8 €	ai	1.6	(1.3-	-1.9)	ppb	Suppl.	Nelson & Burke (1977)
103.4	Additional A	quatic Laborato	ry Te	st	s							
103.4.1	Estuarine 96-Hour LC/EC50	Sheepshead Pink Shrimp Eastern	35 35		ai ai							Lowe (1970) Lowe (1970)
	20, 20J0	Oyster larvae	35	8 8	ai	no ef		t at 8 hr			Suppl.	Lowe (1970)
												5

103 Field Tests

103.5.2	Simulated Field Test - Small Pen	R-n. Pheasant 35	% ai	5 lb ai/A - some died 5 lb ai/A - no deaths 10 lb ai/A - no deaths		Lamb & Nelson (197) Fisher (197)
	Study			6 lb ai/A - reported little or no hazard	Invalid Invalid	
		Bobwhite 15 Wild Bird Pop.	% ai	20 lb ai/A - l died reported little or no hazard	Invalid Invalid	Lamb et al. (1974)
		Eng. Sparrow 15 Bobwhite 15 N. Z. Rabbit 15	% ai	20 lb ai/A — ?/l2 death: 2/l2 deaths 0/l2 deaths	Suppl.	Lamb & Jones (1972)
				40 lb ai/A incorporated some deaths in both	Suppl. Suppl.	Lamb & Nelson (197)

104 Hazard Assessment

104.1 Discussion

Fenamiphos is an organophosphate compound which is used as a nematicide. It degrades into its sulfoxide and sulfone metabolites which also afford additional pest protection because these products are systemically absorbed by the plants. The sulfoxide and sulfone metabolites are persistent and bind readily to soil particles.

Acutely fenamiphos and its two degradates (its sulfoxide and sulfone metabolites) are very highly toxic to mammals and most bird species. Dietary tests indicate fenamiphos to be very highly toxic to quail and highly toxic to mallard ducks. In the aquatic environment fenamiphos is very highly toxic to bluegill sunfish, rainbow trout, and daphnids, while the two metabolites were found to be practically non-toxic to bluegill sunfish.

Nemacur 3 (E) and Nemacur 15G were proposed for use on grapes to control nematodes at a rate of 18 lb ai per acre. Broadcast and band applications are recommended for both products using ground injection equipment or suitable ground equipment followed immediately by soil incorporation 2 to 4 inches deep.

104.2 Likelihood of Adverse Effects on Non-target Organisms

According to Gusey and Maturgo (1973) grape vineyards are used extensively for feeding, nesting, and cover by many wildlife species including 24 songbird species, 5 upland gamebirds, wood ducks, 12 fur and game mammals and white-tailed deer. Application of Nemacur 3 (an emulsifible systemic insecticide) at proposed rates and soil incorporation to a depth of 2 or more inches would result in residues in soil of less than 20 ppm, which is less than

the subacute dietary IC50 values for birds. Assuming 10 percent transport to adjacent aquatic habitats and 100 percent solubility (conditions reflecting worst case), fenamiphos residues in the water would be less than 96-hour IC50 for the most sensitive fish species and about equal to the available (invalid study) 48-hour EC50 for daphnids. Spray drift to aquatic areas is not likely, since the application is by ground equipment and the nozzles would be close to and directed toward the ground. Based on the above reasoning, use of Nemacur 3 at the proposed rates followed by immediate soil incorporation would appear to present little hazard to nontarget fish and wildlife.

As in the case of Nemacur 3 (E), the proposed application rates and immediate incorporation of Nemacur 15G granules into the ground would eliminate most hazard to aquatic organisms. However, fenamiphos formulated as a granular pesticide would appear to present a slightly more hazardous situation for terrestrial species which may accidently or intentionally ingest sufficient granules to cause mortality.

At the proposed application rate of 18 1b ai per acre and an average of 0.0135 mg ai per granule, each treated square foot would contain 187 mg ai or over 13,000 granules of fenamiphos. Assuming that 2 to 3 percent of the granules will remain uncovered following soil. incorporation as reported in granular field studies at Iowa State University (D. Erbach and J. Tollefson, unpublished), over 260 granules would remain exposed after treatment. During soil injection granules may be expected to be spilled and remain exposed when the injection machinery is inserted and withdrawn from the ground at the ends of the rows. Incorporation of broadcasted granules by discing may be expected to leave an even greater percentage of granules exposed.

Although the following avian results were obtained from oral LD50 studies which tested insufficient numbers of birds for too short an observation period, for lack of available data the results can be used to estimate the potential acute hazard on representative species:

Test Species LD50 x Rody Weight = LD50 Dose/Animal = # Granules/Animal

Bobwhite	(M)	0.7×0.17	kg	0.12 mg	ai/bird	8.9
Bobwhite	(F)	0.9×0.17	kg	0.15 mg	ai/bird	11.1
Mal lard	(M)	1.1×1.1	kg	1.21 mg	ai/bird	89.6
Mallard	(F)	1.2×1.1	kg	1.32 mg	ai/bird	97.8
Mouse		8.3 x 0.02	kg	0.17 mg	ai/mouse	12.6

Preliminary tests by EER on house sparrows and red-wing blackbirds also indicate that only a few granules are necessary to cause mortality:

		Number of Granules Fed	
	1	5	10
House Sparrow	0/5 dead	2/5 dead	3/5 dead
Red-wing Blackbird	1/5 dead	2/5 dead	3/5 dead

Both sets of data indicate that a single treated square foot contains a sufficient number of granules to exceed the acute oral LD50 for all of these representative species. While it is unlikely that mammals would intentionally ingest granules, some mammals could ingest

granules attached to mucous membranes of some invertebrates. On the whole, mammals are not likely to be adversely effected by this use.

On the other hard, birds may ingest granules either accidently with grit which aids digestion or attached to the mucous membranes of prey such as slugs, earthworms, etc. Based on exposure and toxicity, some avian mortality may be expected from this proposed use. Indeed, at least one PIMS report indicates avian mortality resulting from the use of Nemacur granules. In Florida, six ducks were reported killed following consumption of fenamiphos granules applied to turf.

104.3 Endangered Species Considerations

With grape vineyards are present in almost all of the 48 contiguous states and in many of the counties within each state, almost every endangered species has the potential of being exposured to fenamiphos from use on grapes to control nematodes. While the number of species with the potential for exposure is great, the potential for any impact on them is remote since the acreage in grape vineyards are small in most areas. Over 85 percent of the 712,804 acres are grown in California and only Michigan, New York, Pennsylvania, and Washington reported more than 10,000 acres in 1978.

In previous OES biological opinions on pesticide use on grapes for Carbofuran (10G, 15G, and 4F) dated May 1, 1981 and for Endosulfan (3G, 34EC, 50WP, etc.) dated July 30, 1982, OES did not identify any endangered species as being in jeopardy. Since OES concluded that no jeopary existed for either carbofuran which is similar to fenamiphos in formulation and toxicity to birds or endosulfan which has similar aquatic toxicity, EEB concludes that fenamiphos use on grapes as proposed will not jeopardize any endangered species.

104.4 Adequacy of Toxicity Data

Of the minimum six basic studies, only the two avian dieatry IC50 and the two fish 96-hour IC50 studies are adequate to support this registration. The avian acute oral tests used too few birds and the observation period was too short. The daphnia study did not use the first instar life stage as required.

104.5 Additional Data Required

See Section 107.5

107 Conclusions

EEB cannot conduct a complete hazard assessment for the proposed use of Nemacur 15G and 3 (E) on grapes, because some essential studies are missing. From the existing data base, EEB expects little or no impact on wildlife from the use of Nemacur 3. Use of Nemacur 15G is expected to result in the exposure of sufficient granules to have some adverse effects on birds and possibly mammals, despite directions to incorporate granules into the soil. Additional testing are necessary to estimate the extent of the hazard to these wildlife.

107.1 Environmental Fate and Toxicological Acknowledgemnet

No additional information was received to support this proposed use on grapes from EFB or Tox branchs.

107.2 Classification Labeling

If not already classified as such, EEB suggests a Restricted Use classification for protection of nontarget wildlife.

107.3 Environmental Hazards Labeling

Based on the available data, the existing labeling is appropriate.

107.4 Data Adequacy Conclusions

Two of the six basic studies are missing and from existing data the need for a small-pen simulated field study is indicated to support the registration of the Nemacur 15G formulation.

107.5 Data Requests

Additional studies required to support the proposed conditional registration of Nemacur for use on grapes are:

1 - Avian acute oral LD50 test on either bobwhite or mallard duck;

1 - 48-Hour or 96-hour EC50 on an aquatic invertebrate, preferably Daphnia magna; and

1 - Small-pen simulated field study.

Given the available data on the toxicity of fenamiphos and its potential exposure to birds, a small-pen simulated field study is required using Nemacur 15G at the maximum recommended rate of application.

107.6 Special Notes

The above additional tests have been requested to support previous action, but no data was been received.

107.7 Recommendations

EEB has reviewed the proposed conditional registration of fenamiphos (Nemacur 15G and 3 (E)) for use on grapes. Insufficient data has been submitted to complete a full hazard assessment. See Section 107.5 for additional data needs. Based on the available data and use information EEB concludes that the proposed uses will result in mortality of some birds and possibly some mammals caused by the ingestion of Nemacur 15G granules. Additional data from the simulated field study are needed before the extent of the granular hazard can be assessed.

William S. Rabert

William S. Rabert, Biologist

Section 3, EEB, HED

Date: 9/28/82

David Coppage, Section Head Section 3, EEB, HED

Date: 9/29/82

9/29/82

Date:

Clayton Bushong, Chief Ecological Effects Branch HED

10